dKk7rteftdsaf
  • 0 videos
  • 2 playlists

About

Inductors are typically used as energy storage devices in switched-mode power devices to produce DC current. The [url=http://www.goldcoil.net/inductor/]inductor[/url], which stores energy, supplies energy to the circuit to maintain

current flow during “off” switching periods, thus enabling topographies where output voltage exceeds input voltage.

Due to the way they work—by not only altering electric field but the magnetic field around it—many people struggle to understand them.

What is an inductor?
An inductor is arguably the simplest of all electronic components. It’s a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. Typically, an inductor will consist

of an insulated wire that’s wound into a coil, much like a resistor. This design was settled on following extensive trial and error methods that considered methods like Hanna curves and area-product.

When the current flowing through the coil changes, the time-varying magnetic field induces voltage in the conductor with a polarity which opposes the change in current that created it. As such, inductors oppose any changes in current

that pass through them.
The induced magnetic field also induces an electrical property known as inductance—the ratio of voltage to the rate of change of current. Inductance quantifies how much energy an inductor is capable of storing.
Inductor design and key components
The design of an inductor is governed by electrical, mechanical, and thermal requirements of a given application. In general, it involves:
Selecting the core material
Deciding a core shape and size
Selecting a winding wire
The core material is an enamel-coated magnetic wire typically made of copper which is then coated in layers of insulating polymer material. The winding can form many shapes, including circular, rectangular foil, and square cross-section.

A magnetic wire is chosen to confine and guide the magnetic fields, and this is insulated to prevent problems like short circuits and breakdowns.

The different types of inductor
Different applications require different types of inductor. In almost all cases, you’ll find that an inductor in a system is formed around a core material—generally iron or iron compounds—to support the creation of a strong magnetic

field.

Iron core inductors
Iron is the classic and most recognizable magnetic material, making it the perfect choice for use in inductors. As above, iron in inductors takes the form of an iron core. They are typically used for low frequency line filtering due to

their relatively large inductances. They are also used a lot in audio equipment. Inductors don’t always need to have an iron core, though.


Air core inductors
As the name suggests, air core inductors have no core—the core is open air. Since air has a low permeability, the inductance of air core inductors is very low. This means that the rate of current rise is relatively fast for an applied

voltage, making them capable of handling high frequencies found in applications like RF circuits.


Ferrite core inductor
A ferrite is a ceramic material made by mixing and firing iron(III) oxide blended with small amounts of one or more additional metallic elements, such as nickel and zinc. When used in inductors, ferrite powder is mixed with an epoxy

resin and molded to form a core around which a magnetic wire can be wound. Ferrite inductors are the most widely used type as it’s possible to finely control their permeability by tuning the ratio of ferrite to epoxy.
power inductors
A coil is a generic name for an electrode in the shape of a spiral. Among the different types of coils, there are coils called “inductors” which are used for electrical applications. Inductors can be further categorized into RF

inductors used for signal processing, and power inductors for power supply lines. The power inductors discussed in this section form part of the voltage conversion circuit in a DC-DC converter or other device.
Here we will explain the operation of a [url=http://www.goldcoil.net/inductor/power-inductor/]power inductor[/url] in a DC-DC converter. A power inductor is used in a step-up, step-down, or step-up/step-down circuit to convert a certain

voltage to the required voltage. Among those different circuits, it is primarily used in a type of circuit called a “switching regulator.”

Figure 1-1 shows an example of a switching regulator step-down circuit.
It uses an IC, power inductor, and capacitor to convert a DC input voltage to the required output voltage. The power inductor works with the capacitor to play the role of rectifying the rectangular wave output from the IC to a direct

current.
If either one of these components is missing, the output cannot be properly rectified.

What is a transformer?

A transformer is a device that transfers electric energy from one alternating-current circuit to one or more other circuits, either increasing (stepping up) or reducing (stepping down) the voltage.

Where are transformers used?

Transformers are employed for widely varying purposes. For example, a [url=http://www.goldcoil.net/transformer/]transformer[/url] is often used to reduce the voltage of conventional power circuits to operate low-

voltage devices and to raise the voltage from electric generators so that electric power can be transmitted over long distances.


Why is the iron core of a transformer laminated?

The iron core of a transformer is laminated to reduce eddy currents. Eddy currents are the small currents that result from the changing magnetic field created by the alternating current in the

first coil. They need to be minimized so they won’t disturb the flow of electricity from the primary coil to the secondary coil.


transformer, device that transfers electric energy from one alternating-current circuit to one or more other circuits, either increasing (stepping up) or reducing (stepping down) the voltage. Transformers are employed for widely

varying purposes; e.g., to reduce the voltage of conventional power circuits to operate low-voltage devices, such as doorbells and toy electric trains, and to raise the voltage from electric generators so that electric

power can be transmitted over long distances.

Social Links

Playlists

Loading... Loading...

Videos from dKk7rteftdsaf

  • Lo siento, no hay detalles en este momento.